Yeast PP4 Interacts with ATR Homolog Ddc2-Mec1 and Regulates Checkpoint Signaling

Highlights
- S phase functions of Mec1 kinase are balanced by phosphatase Pph3-Psy2
- Mec1-Ddc2 binds PP4 (Pph3-Psy2) through a Ddc2-Psy2 interaction site
- The two complexes colocalize at foci of stalled replication forks
- Most mec1-100-sensitive phosphorylation events on HU are PP4 targets

In Brief
The central checkpoint kinase Mec1-Ddc2 kinase (HsATR-ATRIP) is essential for survival of acute replication stress. Hustedt et al. show that the conserved yeast PP4 phosphatase (Psy2-Pph3) binds Mec1-Ddc2 and dephosphorylates S phase targets of Mec1-Ddc2 including Mec1.

Authors
Nicole Hustedt, Andrew Seeber, ..., Kenji Shimada, Susan M. Gasser

Correspondence
susan.gasser@fmi.ch

Articles
- Hustedt et al., 2015, Molecular Cell 57, 273–289

January 22, 2015 ©2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.molcel.2014.11.016
Yeast PP4 Interacts with ATR Homolog Ddc2-Mec1 and Regulates Checkpoint Signaling

Nicole Hustedt, Andrew Seeber, Ragna Sack, Monika Tsai-Pflugfelder, Bhupinder Bhullar, Hanneke Vlaming, Fred van Leeuwen, Aude Guenole, Haico van Attikum, Rohith Srivas, Trey Ideker, Kenji Shimada, and Susan M. Gasser

1Friedrich Miescher Institute for Biomedical Research, Maulbeereinstrasse 66, 4058 Basel, Switzerland
2Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
3Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056 Basel, Switzerland
4Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
5Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
6Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
7Co-senior author
*Correspondence: susan.gasser@fmi.ch
http://dx.doi.org/10.1016/j.molcel.2014.11.016

SUMMARY

Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.

INTRODUCTION

Cells are constantly exposed to DNA damage. Lesions can arise either from exogenous agents (e.g., DNA damaging drugs) or endogenous events (e.g., replication forks encountering barriers) (Aguilera and García-Muse, 2013). DNA damage checkpoints sense damage, stop the cell cycle, and induce DNA repair events in order to preserve genome integrity (Friedel et al., 2009). Key to these signaling cascades are the PI3K-like kinases (PI3KK) ATM and ATR, or Tel1 and Mec1 in budding yeast (Cimprich and Cortez, 2008).

Whereas ATM is primarily activated in response to DNA double strand breaks (DSBs), ATR can sense a variety of lesions (Cimprich and Cortez, 2008). Most ATR activation appears to involve single-stranded (ss)DNA coated by the ssDNA binding protein replication protein A (RPA). The ATR interacting protein, ATRIP (Ddc2 in yeast), is needed to bind ssDNA (Zou and Elledge, 2003), whereas the Rad17-RFC2-5 clamp loading complex (Rad24-Rfc2-5 in S. cerevisiae) recognizes a double-stranded (ds)DNA adjacent to ssDNA structure and indirectly recruits TopBP1 (S. Dpb11) to further activate ATR/Mec1 (Mordes et al., 2008).

Once activated, the yeast Mec1 kinase phosphorylates the downstream kinases Rad53 and Chk1 in a manner dependent on mediator proteins. In the case of Mec1 activation in response to DSB or DNA adducts (methyl methanesulfonate [MMS] treatment), the checkpoint protein Rad9 (53BP1 in mammals) recruits Rad53 and facilitates its phosphorylation, while in response to hydroxyurea (HU)-induced replication stress, the fork components Mrc1 and Sgs1 promote Rad53 activation by Mec1 (Hustedt et al., 2013). In S phase cells, higher levels of damage are required to activate the Mec1-dependent checkpoint, suggesting an activation threshold for the intra-S checkpoint (Shimada et al., 2002; Tercero et al., 2003). This threshold may ensure that the ssDNA found at normal replication forks does not trigger the checkpoint response.

Whereas Mec1 activation has been studied extensively, how the replication checkpoint is downregulated and/or modulated to prevent unwarranted checkpoint induction is not well understood. A number of phosphatases have been shown to dephosphorylate Rad53, and it is proposed that the phosphatase used depends on the type of lesion that provokes Rad53 activation (Heideker et al., 2007). For instance, the PP1 phosphatase Glc7 was reported to promote Rad53 dephosphorylation after exposure to HU (Bazzi et al., 2010), while the PP2C phosphatases Ptc2 and Ptc3 appear to dephosphorylate Rad53 after MMS treatment (O’Neill et al., 2007; Szyjka et al., 2008), although Ptc2/3 may compensate for loss Pph3 and vice versa during...
recovery from MMS treatment or DSBs (Kim et al., 2011; Travesa et al., 2006). Finally, PP4 was also implicated in the dephosphorylation of Mec1 substrates Zip1 (Falk et al., 2010), Cdc13 (Zhang and Durocher, 2010), Cbf1 (Bandyopadhyay et al., 2010), and histone H2A (Keogh et al., 2006).

In human cells, the data on phosphatases and checkpoints are no less complicated: both downstream kinases CHK1 and CHK2 are counteracted by both the PP2C (Wip1) and PP2A phosphatases, while PP4 was shown to dephosphorylate γH2AX (phosphorylated H2AX) (Chowdhury et al., 2008; Freeman and Monteiro, 2010; Nakada et al., 2008). PP4 was also implicated in dephosphorylation of RPA2 in C. albicans and mammals (Lee et al., 2010; Wang et al., 2013), as well as mammalian S3BP1, KAP1, and CHD4 (Lee et al., 2012, 2014). Other mechanisms that downregulate the checkpoint act by degrading Mrc1 or human CLASPIN (Fong et al., 2013; Malland et al., 2006; Peschiarioliet al., 2006), or by sequestering Rad9 by Rtt107-Slx4 in yeast (Ohouo et al., 2013). To date, however, no study has examined whether Mec1-Ddc2 activity itself is under negative control.

Here, we describe an interaction between the Mec1-Ddc2 checkpoint kinase and the yeast PP4 phosphatase PpH3-Psy2. A strong genetic relationship between mutants in the two complexes was identified in forward and reverse genome-wide genetic screens. We find that Mec1-Ddc2 and PP4 coregulate many Mec1-dependent phosphorylation targets in response to HU stress, including Rad53 and H2A, suggesting that this interaction maintains a balance of phosphorylation that is important for surviving fork-associated stress. We also identify a phosphoacceptor site within Mec1 that is regulated in a Pph3-dependent manner, mutation of which compromises survival of Zeocin-induced damage.

RESULTS

Spontaneous mec1-100 Suppressor Mutations Map to PSY2 and PPH3 Genes

To study how the replication checkpoint is controlled, we used a mutant allele of the checkpoint kinase Mec1, mec1-100, which shows a delayed activation of Rad53 in S phase cells, but robust Rad53 phosphorylation in G2 (Paciotti et al., 2001). This allele carries two mutations outside of the catalytic domain, N1700S is within and F1179S is flanking the FAT domain (Paciotti et al., 2001). The kinase activity of the mec1-100 kinase is intact: the mutant kinase recovered from cell lysates by coprecipitation with Ddc2-GFP, phosphorylates a target peptide (Sgs1 amino acids [aa] 404–604) (Heinigau et al., 2012) as efficiently as wild-type Mec1 (Figure S1A available online). Mec1-100-Ddc2 recruitment to stalled forks is equivalent to that of wild-type Mec1-Ddc2, yet the mutation compromises the recovery of engaged polymerases near stalled forks and fails to prevent late origin firing on HU (Cobb et al., 2005). Its synthetic defects in combination with sgs1Δ are not mimicked by rad53Δ, which argues that the Mec1-100 kinase fails to phosphorylate a select set of S phase specific targets that ensure survival of replicative stress.

When plated on HU, spontaneous suppressor mutations arise quite frequently in mec1-100 cells, but not in mec1Δ strains (Figure 1A, full list of yeast strains in Tables S1 and S2). Since suppression could stem from either loss of negative regulators or upregulation of downstream Mec1 targets, we analyzed 31 suppressor colonies by sequencing, after backcrossing 2–3 times with the parental wild-type strain. The suppressors fell into two classes: those that cosegregated with the MEC1 locus (“intragenic”), and those that segregated independently (“extragenic”). All intragenic suppressors had acquired one additional mutation in mec1-100, rendering the cells HU-resistant (Figures 1B and S1B). Remarkably, genome-wide sequencing showed that all 12 extragenic suppressor mutations were in one of two genes, PSY2 or PPH3, which encode subunits of the PP4 phosphatase (Figures 1B and S1C). In the catalytic subunit, PPH3, mutations occurred throughout the coding region; while in PSY2 we detected premature STOP codons at aa 40 or aa 183 (Figure 1B). All alleles were recessive, as HU sensitivity was restored to psy2 or pph3 double mutants with mec1-100, after transformation with wild-type PSY2 or PPH3 genes (data not shown).

Epistatic Miniarray Profiling Groups mec1-100 with Replication Checkpoint Deficient Mutations

To better characterize mec1-100 effects, we performed a high-throughput genetic interaction screen based on the previously described Epistatic Miniarray profiling (E-MAP) method (Collins et al., 2006, 2007). We combined 35 query strains bearing mutations in 35 genes implicated in DNA replication fork or checkpoint function, with an array of 1,525 deletions and a few decreased abundance by mRNA perturbation (DAMP) mutants, all representing functions that are required for chromatin-based processes (Guénolé et al., 2013) (Table S3). The resulting double mutants were scored for their growth in the presence of 0, 20, and 100 mM HU, and quantitative genetic interaction scores were calculated (Collins et al., 2006) (Figure 1C). A positive score indicates suppression (or potentially, epistasis), while a negative score shows synthetic sickness or synthetic lethality. Quality control of the data led to the exclusion of 214 mutants (see Supplemental Experimental Procedures), yielding a network of 45,885 (35 x 1,311) genetic interactions (Table S4).

We first compared the overall genetic interaction profile of mec1-100 with the profiles of the other query mutants. Mutants with similar genetic interaction profiles often indicate shared function (Collins et al., 2007). As expected, the mec1-100 profile was highly correlated with mutants that compromise the S phase checkpoint (i.e., sgs1Δ, rad24Δ, rad17Δ, dcd1Δ, mrc1Δ, and ddc1Δ; Figure 1D). The replication checkpoint mediator, mrc1Δ, showed the strongest correlation with mec1-100 in the presence of HU, yet did not correlate in its absence, arguing that the proteins cooperate on HU, but function distinctly in an unperturbed S phase (Figure 1D). These S phase checkpoint mutants also show negative genetic interactions with mec1-100 (Figures 1C, S1D, and S1E). Thus, they most likely act on parallel pathways that achieve the same function as mec1-100, or else on the same pathway in a redundant fashion (Figure 1C).

Interestingly, there are two groups of mutants whose genetic correlation patterns change dramatically upon HU treatment. Profiles of mutants that compromise break-induced replication or translesion synthesis (i.e., rad18Δ, sli5Δ, sli8Δ, mre11Δ, rad52Δ, and bre1Δ) correlate with mec1-100 only in the
Figure 1. Mutations in PSY2 and PPH3 Genes Suppress mec1-100 HU Sensitivity

(A) The indicated strains (see Tables S1 and S2) were plated on YPAD + 50 mM HU for 3 days at 30°C. Colonies appear white on dark background.

(B) Mec1, Ddc2, Psy2, and Pph3 domain architecture with mec1-100 mutations in black and mec1-100 suppressor mutations in red. Bold, mutations found more than once independently. Asterisks, STOP codon at indicated residue or frameshift (aa 181) resulting in STOP at aa 183 (GA-6610).

(C) Upper panel, overview of genetic interaction screen (E-MAP; full data in Table S4), 35 mutant ‘query’ strains combined with 1,525 mutant strains (1,311 after quality control), see Table S3. Double mutant growth was scored on 0, 20, and 100 mM HU. Genetic interaction scoring is at right. Hatching indicates ‘no data’ in E-MAP, but confirmed negative interaction by drop assay (see Figure S1E). Lower panel, selected mec1-100 genetic interactions, including phosphatase mutants (significant positive interaction with mec1-100 are in bold). DAmP allele = D. Complete mec1-100 genetic interactions are in Figure S1.

(D) Heat map of Pearson correlation coefficients for mec1-100 genetic interaction profile with those of the other strains on 0, 20, and 100 mM HU. Correlation coding is at right.

(A) The indicated strains (see Tables S1 and S2) were plated on YPAD + 50 mM HU for 3 days at 30°C. Colonies appear white on dark background.

(B) Mec1, Ddc2, Psy2, and Pph3 domain architecture with mec1-100 mutations in black and mec1-100 suppressor mutations in red. Bold, mutations found more than once independently. Asterisks, STOP codon at indicated residue or frameshift (aa 181) resulting in STOP at aa 183 (GA-6610).

(C) Upper panel, overview of genetic interaction screen (E-MAP; full data in Table S4), 35 mutant ‘query’ strains combined with 1,525 mutant strains (1,311 after quality control), see Table S3. Double mutant growth was scored on 0, 20, and 100 mM HU. Genetic interaction scoring is at right. Hatching indicates ‘no data’ in E-MAP, but confirmed negative interaction by drop assay (see Figure S1E). Lower panel, selected mec1-100 genetic interactions, including phosphatase mutants (significant positive interaction with mec1-100 are in bold). DAmP allele = D. Complete mec1-100 genetic interactions are in Figure S1.

(D) Heat map of Pearson correlation coefficients for mec1-100 genetic interaction profile with those of the other strains on 0, 20, and 100 mM HU. Correlation coding is at right.

(A) The indicated strains (see Tables S1 and S2) were plated on YPAD + 50 mM HU for 3 days at 30°C. Colonies appear white on dark background.
Figure 2. Validation of psy2\(\Delta\) and pph3\(\Delta\) as Suppressors of mec1-100 HU Sensitivity

(A) Scheme of yeast phosphatases and relationships with mec1-100 or checkpoint downregulation roles, see text.

(B) pph3\(\Delta\) or pph3\(\Delta\) mec1-100 cells with TRP1-based control plasmid or plasmids expressing PPH3 or pph3-H112N from PPH3 promoter. Cells grown in synthetic complete medium (lacking tryptophan) (SC-TRP) in a 5-fold dilution series on SC-TRP ±100 mM HU.

(legend continued on next page)
presence of HU, while the opposite was observed for rad9Δ, dot1Δ, sae2Δ, yku70Δ, and sgs1-r1Δ (Hegnauer et al., 2012), which confer selective sensitivity to Zeocin. These genetic interaction profiles suggest that in the absence of HU, mec1-100 cells are somewhat compromised for DSB repair, while on HU, replication fork stabilization and recovery are lost. Indeed, even on HU, the specific mutants that interact with mec1-100 (based on threshold scores ≥ 2 for suppressive and ≤ -2 for negative interactions) fall into distinct functional groups (Figures 1C and S1D, discussed in legend). However, of the 1,311 mutants scored, psy2Δ and pph3Δ showed the highest suppressive genetic interaction with mec1-100, and clearly promoted survival on HU (Figures 1C and S1D; Table S4).

PP4 Subunits Psy2 and Pph3 Counteract mec1-100 Sensitivities

Given that two independent screens show that loss of Psy2 or Pph3 robustly suppresses mec1-100 lethality on HU, we studied these factors in depth. Psy2 and Pph3 form the PP4 phosphatase, with Pph3 as the catalytic subunit (Gingras et al., 2005). We first showed that the suppression of mec1-100 by pph3Δ indeed reflects loss of phosphatase activity, since the catalytically inactive mutant, pph3-H112N (O’Neill et al., 2007), supports mec1-100 growth on HU to the same extent as pph3Δ (Figure 2B).

Because both the E-MAP and past experiments had implicated multiple phosphatases in yeast checkpoint control (Figure 2A), we created double mutants in a second yeast background (W303) of mec1-100 with other phosphatase genes and scored for survival on HU stress (Figure 2C). The E-MAP suggested that the loss of PP5 phosphatase (ppl1Δ), like those of the PP2A phosphatase (pph21Δ, pph22Δ, sap155Δ, sap185Δ, sap190Δ, and sap33Δ), had no genetic interaction with mec1-100 (Figure 1C). On the other hand, loss of Rrd2, which interacts with and regulates PP2A, or Rrd1, a binding partner of Pph3 (PP4), like Ppg1 (related to PP4 and PP6) and Slt4 (PP6) (Van Hoof et al., 2005), did show low suppression level by E-MAP (Figure 1C). These latter effects, however, were extremely weak when deletions were recreated in W303 (Figure 2C), as was loss of Ptc2 (one of seven PP2C proteins; Figure 2C). We also could rule out robust effects of other PP2C mutants (ptc1Δ and ptc4Δ) and of a phosphotyrosyl phosphatase mutant oca1Δ, which showed little or no suppression of mec1-100 in W303 on HU (Figure 2C).

Deletions of PPH3 or PSY2 Counteract Failed Replication Fork Recovery in mec1-100 Cells

Previous work suggested that PP4 dephosphorylates the checkpoint effector kinase Rad53 in a manner that is redundant with Ptc2 and Ptc3 (PP2C-type phosphatases) and the PP1-type phosphatase, Glc7, depending on the type of damage that activated the checkpoint (Bazzi et al., 2010; Heideker et al., 2007; Leroy et al., 2003; O’Neill et al., 2007; Travesa et al., 2008) (Figure 2A). Indeed, it was reported that Pph3 was dispensable for Rad53 dephosphorylation after HU arrest, while Glc7 was not. However, in the context of the HU-induced checkpoint in mec1-100, neither the partial loss of function allele glc7-132 (Bazzi et al., 2010), nor ptc2 or ptc3 deletions, showed significant suppression of HU-induced lethality (Figure 2C). Thus, Glc7 and Ptc2/Ptc3 probably counteract responses stimulated by conditions other than HU.

Previous work suggested that Rrd1 and Pph3 act on the same pathway at DSBs to dephosphorylate the Mec1 target Cdc13 (Zhang and Durocher, 2010). Therefore, we tested rrd1Δ epis-tasis with pph3Δ in triple mutants. Surprisingly, the coupling of rrd1Δ with psy2Δ or pph3Δ reduced the suppression of mec1-100 sensitivity to HU (Figure 2D), arguing that rrd1Δ interferes with suppression by psy2Δ or pph3Δ, while both the pph3Δ ptc2Δ and pph3Δ psy2Δ double mutants suppressed in an additive fashion. We conclude that Rrd1 counters mec1-100 lethality on HU in a manner distinct from PP4 (Figure 2D).

To shed more light on how PP4 suppresses mec1-100 lethality on HU, we checked whether stalled replication forks remain engaged in the phosphatase mutants, allowing fork restart upon HU removal. When pheromone synchronized cultures are released into S phase on HU, mec1-100 cells suffer a partial loss of replicative polymerase engagement at sites of early replication and show reduced recovery upon removal of HU (Cobb et al., 2005). We tested single and double mutants of PP4 and PP2C with mec1-100, and scored for recovery after release from a synchronous arrest in S phase, both in the presence and absence of Tel1 (Figures 2E and 2F). The combination of pph3Δ with mec1-100 robustly rescued the defect, particularly at early time points (1–2 hr, Figure 2E), while ptc2Δ had a weaker effect, particularly in the absence of Tel1 (Figure 2F). We conclude that loss of Pph3 efficiently suppresses both the HU sensitivity and fork recovery defects of mec1-100, without recourse to the Tel1/DSB checkpoint response.

Rad53 Activation Correlates with High Levels of Suppression

In the checkpoint cascade, Rad53 is activated by Mec1-mediated phosphorylation, which is compromised in mec1-100 strains (Paciotti et al., 2001). Given that Ptc2 and Pph3 were both implicated in Rad53 dephosphorylation under other conditions (Travesa et al., 2008), we tested whether the reduced S phase level of Rad53 phosphorylation found in mec1-100 cells is counteracted by loss of Pph3 or Ptc2. Cells bearing mec1-100 in combination with pph3Δ or ptc2Δ were phosphore synchronized in G1 and released into S phase in the presence of HU. Western blots showed the characteristic delay in Rad53 activation in the mec1-100 background; this was compensated by pph3Δ or more weakly, by ptc2Δ (Figure 3A). By performing all assays in a tel1Δ background, we could exclude that the
observed suppression stems from compensation by Tel1 (Figures 3B and S2A). Neither ptc2Δ nor pph3Δ influenced Rad53 activation kinetics in MEC1+ cells (Figure 3A), although in both MEC1+ and mec1-100 backgrounds, Rad53 remained more robustly phosphorylated at 90 min when Pph3 was ablated, than with loss of Ptc2, with very pronounced differences by

Figure 3. Suppression of mec1-100 Correlates with Rad53 Activation
(A) Rad53 phosphorylation monitored by western blot after synchronization in G1 (α factor) and release for the indicated times into 0.2 M HU. Genotypes of isogenic strains are indicated in Tables S1 and S2.
(B) Isogenic strains as indicated (see Tables S1 and S2) were treated as in (A).
(C) A 5-fold dilution series on YPAD ±100 mM HU. Genotypes of isogenic strains are indicated in Tables S1 and S2.
(D) A 5-fold dilution series of isogenic strains as indicated on YPAD ±2 mM HU. Asterisk, 10× more cells plated.
(E) Isogenic strains with indicated genotypes were treated as in (D).
(F) Isogenic strains with indicated genotypes were treated as in (D). See Figure S2; Tables S1 and S2.
120 min after HU removal (Figures 3A, 3B, S2A, and S2B). Nonetheless, this delay in Rad53 dephosphorylation does not compromise survival in the recovery assay, while the efficiency of activation does (Figure 2E).

In these assays, ptc2Δ had effects similar to pph3Δ, although generally less pronounced (Figures 2 and 3). Consistent with the notion that PP4 acts by dephosphorylating targets of checkpoint kinases, we found that Tel1 was necessary in a mec1Δ null for pph3Δ to exert its suppressor effect, although it was not necessary in mec1-100, which retains residual Mec1 kinase activity (Figures 3C, 3D, and S1A). In conclusion, the correlation between Rad53 activation kinetics and the suppression of HU sensitivity argues that pph3Δ suppresses mec1-100, at least partly by regulating the efficiency of Rad53 activation.

PP4 Targets Rad53 and Other Factors to Mediate mec1-100 Suppression

Rad53 initiates many of the downstream checkpoint responses on HU (e.g., cell cycle arrest and late origin firing), yet there is extensive evidence that Mec1 has unique roles in the replication checkpoint that are independent of Rad53 (Hustedt et al., 2013). To see if the suppression of mec1-100 by pph3Δ involves targets beyond Rad53, we asked whether pph3Δ can suppress mec1-100 in the absence of Rad53. To avoid rad53Δ lethality, we coupled it with a bypass mutation, sml1Δ (Zhao et al., 1998), generating a strain that is extremely sensitive to HU. Nonetheless, serial dilution of the mec1-100 rad53Δ sml1Δ mutant on plates with low HU concentrations revealed a mild, but reproducible increase in survival upon deletion of PP3H (Figure 3E). This was also true in the absence of Chk1 (Figure 3F). Thus, while Rad53 plays an important role, the phosphorylation status of proteins other than Rad53 and Chk1 also help rescue the mec1-100 lethality on HU. This residual suppression was not observed in rad53Δ mec1Δ sml1Δ cells, indicating again that the remaining kinase activity of mec1-100 is required for pph3Δ suppression. This underscores the crucial role of Mec1, and not Tel1, in HU survival. In conclusion, activation of the downstream kinase Rad53 is important, but is not the only Mec1-mediated phosphorylation event enhanced by loss of PP4, ensuring mec1-100 growth on HU.

Restoration of H2A Phosphorylation Does Not Correlate with Suppression

A known target of Pph3 (PP4) during the DNA damage response in both yeast and mammals is histone H2A/H2AX (Chowdhury et al., 2008; Keogh et al., 2006; Nakada et al., 2008). Yeast H2A is phosphorylated on Serine 129 by Mec1 and/or Tel1 at DSBs and stalled replication forks (Cobb et al., 2005; Downs et al., 2000; van Attikum et al., 2004). We confirmed that H2A phosphorylation levels were increased by PP3H or PSY2 deletion in both wild-type (WT) and mec1-100 backgrounds after treating S phase cells with HU (Figure S2D). However, unlike Rad53, phospho-H2A regulation is not only dependent on Pph3 and Pys4, but also on Pys4, a variable third subunit of the complex (Keogh et al., 2006; O’Neill et al., 2007). Given that loss of Pys4 did not rescue mec1-100 HU sensitivity in WT or rad53Δ sml1Δ backgrounds (Figures 1C, 2C, and S2C), we conclude that enhanced H2A phosphorylation cannot be responsible for the rescue of mec1-100 cells on HU.

Phosphopeptides Downregulated in mec1-100 Cells Are Upregulated by pph3 Deletion

To find the Mec1 targets that are responsible for mec1-100 suppression on HU, we performed a quantitative phosphoproteomic study. Specifically, we screened for modifications that are downregulated in mec1-100, compensated by pph3Δ, and left unaffected by rad53Δ (Figure 4A). To eliminate contributions from Tel1 (Figures 2E, 2F, S3A, and S3B), we used a tel1Δ mec1-100 double mutant in the screen. Prior to extraction of proteins, the cultures were arrested in G1 by α factor and released into S phase in the presence of HU (Figure 4B).

There were 2,368 phosphopeptides that could be quantified (Table S5), of which 47 were specifically reduced in mec1-100 tel1Δ, but not in rad53Δ sml1Δ cells (Figure 4C; Table S6). Among them were the repair factor Rdh54, chromatin remodeler INO80 subunit Iss4, the mismatch repair protein Msh6, and transcription regulators like Swi3 and Leo1, the latter being a component of the PAF1 complex (Figure 4D). We did not find any proteins known to control DNA replication. Remarkably, however, when the abundance of these phosphopeptides was scored after deletion of PP3H, almost the entire set was upregulated (i.e., 94% showed restored phosphoprophosphorylation in mec1-100 tel1Δ pph3Δ versus mec1-100 tel1Δ; Figure 4D). This effect, averaged over all mec1-100-dependent targets, is both highly significant (Figure 4D, inlay) and specific, because it was not observed when the entire population of quantified phosphopeptides was compared ±Pph3 (Figure S3A). Remarkably, the loss of Pph3 balances out almost all of the phosphorylation defects that we detect in mec1-100 cells on HU. This supports our genetic results, which showed opposing functions for these two mutations (Figure 1).

Serine/Threonine followed by Glutamine (Q) Phosphopeptides Are Upregulated in rad53Δ, but Are Unaffected by mec1-100

Among the 47 phosphopeptides that were specifically downregulated in the mec1-100 tel1Δ mutant, only a few (ten phosphopeptides) fit the generally assumed ATR/ATM consensus p[S/T]Q (Kim et al., 1999). This could reflect technical problems in our detection of serine/threonine followed by glutamine (Q) (S/TQ) sites, or simply arise because S/TQ-containing peptides did not match the stringent criteria we applied to identify mec1-100 tel1Δ-dependent phosphopeptides. We therefore triaged for phosphopeptides that were less abundant in mec1-100 tel1Δ versus rad53Δ sml1Δ cells (log2 ratio ≤ −1, p value ≤ 0.05), regardless of their abundance in WT cells, and screened independently for known Mec1/Tel1 targets (Chen et al., 2010). Using this approach, we identified many p[S/T]Q phosphopeptides in our phosphoproteomic data set, including known fork-associated Mec1/Tel1 targets such as Rfa2 (Brush et al., 1996) and H2A (Downs et al., 2000) (Figures S3B and S3C; Table S7). These hits were eliminated in our earlier analysis because they were not downregulated in mec1-100 tel1Δ cells versus WT. Thus, mec1-100 kinase is actually proficient for phosphorylating many S/TQ Mec1 targets on HU, consistent with the robust kinase.

Molecular Cell 57, 273–289, January 22, 2015 ©2015 Elsevier Inc. 279
(legend on next page)
activity we detect in the pull-down assay (Figure S1A). These S/TQ acceptor sites are, therefore, unlikely to be responsible for the mec1-100 lethality on HU. Intriguingly, the majority of p[S/T]Q phosphopeptides that we recovered in the second analysis were more abundant in the rad53Δ sml1Δ mutant than in WT cells, and they were not further affected by loss of Pph3 (Figures S3C–S3E). This suggests that in rad53Δ sml1Δ cells, Mec1 and/or Tel1 may be hyperactivated on HU, either because the cells accumulate additional DNA damage at the fork, or because they lose a negative feedback loop through which Rad53 normally downregulates Mec1 activity.

Mec1-Ddc2 and Pph3-Psy2 Physically Interact in a DNA Damage-Independent Manner

From our phosphoproteome analysis, we conclude that almost every phosphopeptide (94%) that was reduced due to the mec1-100 mutation was restored by further removal of Pph3, in the absence of Tel1. How could this robust coordination be guaranteed? We speculated that the Mec1 kinase and PP4 phosphatase might bind each other to ensure coordinated action. To test this, we created yeast strains that expressed epitope-tagged versions of the kinase or phosphatase subunits from their native genomic loci. Whereas the tagged Psy2 and Ddc2 forms were fully functional, tags on Mec1 or Pph3 rendered cells slightly sensitive to MMS or HU (Figures S4A–S4D). Since Ddc2-Mec1 and Psy2-Pph3 are both stable complexes (Gingras et al., 2005; Paciotti et al., 2009), we used the functional tagged versions of Psy2 or Ddc2 in subsequent assays. As positive and negative controls, we tested for interaction with Rfa1 and Ptc2.

Consistent with our hypothesis, immunoprecipitation (IP) of Ddc2-GFP efficiently recovered Psy2-MYC, but not Ptc2 (Ptc2-PK; Figures S4A and S4E). The Psy2-Ddc2 interaction is not compromised by removal of nucleic acids with benzonase and RNaseA (Figure 5A), whereas Ddc2-GFP-Rfa1 signals were sensitive to this treatment (Figure 5A). The Ddc2-GFP/Psy2-MYC interaction was also independent of HU, being scored both in untreated G1- and in treated S phase cells, and the IP worked reciprocally (Figures S5B and S5B). Finally, the robust Ddc2-Psy2 interaction did not require Pph3 or Mec1 and was not affected by the mec1-100 mutant (Figures S5B and S5A).

The interaction was further mapped by yeast-two hybrid, through which we could define the minimal Psy2 domain (aa 130–350) that robustly binds Ddc2 (Figures 5C and S5C). Although a smaller Psy2 fragment (aa 130–350) only weakly binds Ddc2, its deletion fully abolished the interaction. Another robustly expressed Psy2 fragment (aa 25–129; Figure S5D) failed to interact significantly, although its deletion reduced the interaction by about 50%.

Ddc2-Psy2 Homologs Interact in Mammalian Cell Extracts

Psy2 has two human homologs, PP4R3A and PP4R3B, which share an overall sequence similarity with Psy2 of 37% and 44% and an identity of 24% and 22%, respectively. Intriguingly, the Ddc2 binding domain within Psy2 (aa 130–350) is highly conserved in PP4R3A (50% identity) and PP4R3B (51% identity) (Figure 5D). We therefore tested whether these regulatory phosphatase subunits bind ATRIP in human cells, following transient transfection of human embryonic kidney cells (HEK)293T cells with plasmids encoding for MYC-tagged ATRIP and either PP4R3A-GFP, PP4R3B-GFP, or GFP alone. MYC-ATRIP bound efficiently to PP4R3B-GFP, but not to GFP alone and only weakly to PP4R3A-GFP (Figure 5E), even though PP4R3A expression levels were much higher. Thus, the PP4R3B-ATRIP interaction is strongly preferred. We conclude that in budding yeast and human cells Ddc2/ATRIP binds the phosphatase subunit Psy2/PP4R3B, and thus kinase and phosphatase appear capable of forming a complex. In yeast, the interaction involves a conserved N-terminal region of Psy2, and in human cells, both Psy2 and Ddc2 are present.

Ddc2 and Psy2 Interact and Colocalize in Nuclear Foci In Vivo

Although the genetic and biochemical evidence for interaction was strong, it was unclear whether the Mec1/Ddc2-PP4 interaction occurs at the right place and the right time, i.e., at stalled replication forks or sites of damage. To localize the putative complex in living cells, we fused Psy2, Ddc2, and Rfa1 with distinct fluorescent proteins (RFP, GFP, and CFP, respectively). All fusions were expressed under their endogenous promoters from their genomic loci and were fully functional (Figures S4A, S4D, and S4F). As expected, Rfa1-CFP has a punctate nuclear signal in S phase cells, consistent with the existence of replication foci (Passer et al., 1997) (Figures 6A and 6B). Whereas the abundance of Rfa1 renders Rfa1-CFP replication foci difficult to resolve in yeast, both Ddc2-GFP and Psy2-RFP formed foci that were larger and less numerous, even in untreated S phase cells (Figures 6A and 6A), most likely indicating repair foci. Indeed, consistent with previous reports, Rfa1/Ddc2 foci were also detected in G1-phase cells, albeit rarely (Figure S6A) (Lisby et al., 2004).

![Figure 4. Most mec1-100-Regulated Phosphopeptides Are Upregulated by Pph3 Loss](image-url)
Figure 5. Ddc2 and Psy2 Interact Physically

(A) Native extracts from cycling cultures of indicated strains (see Tables S1 and S2) ± RNaseA and benzonase treatment were subjected to anti-GFP IP and western blotting with indicated antibodies. Nucleic acid digestion in GFP-depleted extracts after IP was analyzed by agarose gel and SYBR Safe.

(B) Cells of indicated genotypes (see Tables S1 and S2) were arrested in G1 by a factor and held or released into 0.2 M HU for 30 min. Extracts were subjected to anti-GFP IP and western blotting with indicated antibodies.

(legend continued on next page)
Following incubation with HU, Rfa1, Ddc2, and Psy2 concentrated in intense nuclear foci (Figure 6B), allowing us to score both their number and colocalization (Figures 6C, 6D, and S6C–S6F). Approximately 15% of untreated S phase cells contained a single bright focus of Rfa1 and/or Ddc2, likely indicative of spontaneous damage, while Psy2-RFP occasionally formed two (Figure 6C). On HU, on the other hand, we frequently scored >2 Ddc2 or Psy2 foci per cell (Figure 6C). We quantified the degree of colocalization of the tagged proteins on HU and found that 70% of the Rfa1 foci coincided with both Ddc2 and Psy2, while an additional 20% contained only Rfa1 and Ddc2 (Figure 6D). There were about 70% of the Ddc2 foci that also contained Psy2 (Figure 6D). In cells treated with 400 μg/ml Zeocin, a radiomimetic drug that induces both ssDNA lesions and DSBs, extensive foci containing both Rfa1 and Ddc2 foci were scored (Figures S6B–S6E); strikingly, Psy2 colocalized with Rfa1 primarily when Ddc2 was present (~60% of the brightest foci, Figure S6F).

To go beyond the limited resolution of confocal microscopy, we used the tagged constructs to score Förster resonance energy transfer (FRET), which monitors the energy transfer between donor (GFP) and acceptor (RFP) fluorescent proteins, if they are ≤ 10 nm apart (Figure 6E) (Piston and Kremers, 2007). We used four FRET pairs (Ddc2-GFP/Psy2-RFP; Ddc2-GFP/Rfa1-RFP; Psy2-GFP/Rfa1-RFP; and Rfa2-GFP/Psy2-RFP). This revealed highly significant FRET signals between Ddc2-GFP and Psy2-RFP at the bright foci in S phase cells on HU, suggesting that Mec1-Ddc2 and PP4 are indeed in very close proximity in vivo, at the time and place necessary for mec1-100 suppression. The interaction between Ddc2 and Rfa1 is also substantial, while Psy2-Rfa1 FRET signals were less strong (Figure 6F).

We used a phospho-specific Ser1991 antibody on extracts from HU-treated cells, we detected Mec1, but not mec1-S1991A, on a blot after precipitation with Ddc2-GFP (Figure 7B). Ser1991 phosphorylation is elevated on HU, is not detected in an unperturbed S phase, shows a slight enhancement on Zeocin, and was virtually absent in the mec1-100 strain (Figures 7B and 7C). Importantly, Ser1991 phosphorylation could be restored in mec1-100 cells by deleting PPH3, indicating that PP4 indeed regulates Mec1 phosphorylation, compensating for the mec1-100-associated loss of S1991 modification (Figure 7D).

Mec1 Ser1991-phosphorylation was absent in a catalytic-dead Mec1 protein, yet also in a strain lacking Rad53 (Figure 7D). This suggests that Ser1991 requires both Mec1 and Rad53 for its phosphorylation, although it remains unclear whether either acts directly. We attempted to demonstrate direct dephosphorylation of Ser1991 in vitro using Pph3-Psy2 isolated from cells expressing Psy2-Halo (Figure S7A), but the precipitated Pph3-Psy2 could not dephosphorylate the appropriate Mec1 peptide, even though a nonspecific enzyme, calf intestinal alkaline phosphatase, could dephosphorylate both Cdc13 and Mec1 peptides in vitro and Pph3-Psy2 was able to dephosphorylate Cdc13 (Zhang and Durocher, 2010) (Figure S7B). We cannot exclude that our conditions were inappropriate to monitor dephosphorylation of Ser1991, yet it appears that it is not a preferred substrate of Pph3-Psy2 in vitro.

Surprisingly, the mec1-S1991A mutant showed impaired growth in the presence of Zeocin, but not on HU, MMS, UV, or γ-irradiation (Figures 7E and S7C). This effect is independent of Ser38. We further confirmed the sensitivity of mec1-S1991A cells to induced DSBs by ectopically expressing EcoRI in all checkpoint mutants. Indeed, the mec1-S1991A mutant showed EcoRI-sensitivity (Figure 7F), while mec1-S1991D had a slight resistance. Consistently, the mec1-S1991A mutant shows a strong synergistic interaction with deletion of the DNA damage checkpoint protein Rad9 and additive interactions with other checkpoint mutants rad24Δ, ddc1Δ, and mrc1-AQ (Osborn and Elledge, 2003), and DSB repair mutants rad51Δ and dnl4Δ (Figure S7D). If Mec1 S1991 was the only target site through

(C) Y2H analysis of DDC2 fused to B42-AD and PSY2 fragments fused to lexA-DBD. Bars indicate β-galactosidase activity (error bars represent SD); symbols indicate color on X-GAL plate (raw data in Figure S5C). Dubious interaction (+) and not determined (n.d.).

(D) Scheme of Clustal Omega multiple sequence alignment of PSY2 (P40164), PP4R3A (Q6IN85-1), and PP4R3B (Q5MIZ7-1). Vertical lines, alignment gaps ≥ 5 aa; gray, region missing in clone Q5MIZ7-3, used in (E). The % sequence similarity (in brackets % identity) calculation based on PSY2 length or length of indicated fragments.

(E) HEK293T cells were transfected with plasmids expressing MYC-ATRIP (#3,525) and GFP (#3,493), PP4R3A-GFP (#3,518), or PP4R3B-GFP (#3,588). Native extracts at 48 hr post transfection were subjected to anti-GFP IP and western blotting as indicated. See Figures S4 and S5.

(F) Mec1 Phosphorylation on Serine 1991 Is Regulated in a Pph3-Dependent Manner

Several PP4 targets interact stably with the phosphatase (Keogh et al., 2006; Lee et al., 2010; Ma et al., 2014; O’Neill et al., 2007). Thus, we hypothesized that Pph3 might regulate Mec1, and not only counteract the enzyme by dephosphorylating its targets. To test this, we looked for phosphorylation sites in Ddc2 and Mec1 that are substrates for Pph3-Psy2. After 1 hr on HU, Mec1-Ddc2-GFP complexes were IP’d from mec1-100 or MEC1+ cells, and phosphopeptides were analyzed by mass spectrometry. There were two residues (Ser38 and Ser1991) in Mec1 that were robustly phosphorylated in WT, but not in mec1-100 strains (Figure 7A). While Ser38 has been described previously as a potential autophosphorylation site (Chen et al., 2010; Smolka et al., 2007), phosphorylation at Ser1991, which sits between Mec1’s conserved FAT and kinase domains, has not been reported to date. A number of intragenic suppressor mutations in mec1-100 map to this region (Figures 1B and 7A), and the mammalian ATR kinase has a nearby autophosphorylation site at Thr1989 (Liu et al., 2011; Nam et al., 2011).
which Pph3 regulated Mec1 function, the nonphosphorylatable mecl-S1991A mutant should suppress pph3 defects. This was not the case, indicating that there are other sites in Mec1 or Ddc2 through which Pph3 might regulate Mec1-Ddc2 activity (Figure S7E). Future studies should clarify the molecular details of this regulation pathway.

DISCUSSION

We show that the central checkpoint kinase Mec1-Ddc2 (human ATR-ATRIP) forms a stable complex with the PP4 (Pph3-Psy2) phosphatase. The two enzymes act in a coordinated, yet opposing, manner on a large number of substrates (Figure 7G).
The modification of this target set is compromised in the S phase-specific Mec1 mutant, mec1-100, which confers hypersensitivity to replication stress. The sensitivity of mec1-100 to HU is, however, efficiently suppressed by pph3Δ or psy2Δ. PP4 also counteracts a phosphoacceptor site on Mec1 itself, which is sensitive to the mec1-100 mutation (Figure 7H). In vivo FRET studies then confirmed that Mec1-Ddc2 and PP4 interact at sites of replication fork-induced damage and at DSBs (Figure 6). Although the majority (70%) of the Ddc2 foci colocalize with Psy2, this does not allow us to draw conclusions about the fraction of Mec1-Ddc2 in the cell that is bound to PP4. We do not exclude that Mec1-Ddc2 is in complex with Pph3-Psy2 in undamaged conditions, whereby it might regulate noncheckpoint functions of the kinase.

The complex of phosphatase and kinase may allow the fine-tuning of ATR-ATRIP (Mec1-Ddc2) for different functions through the cell cycle. The fact that there seems to be a higher threshold for damage-induced checkpoint activation in S, as opposed to G2, suggests that Mec1/ATR modulation is an important regulatory event in the cell cycle (Shimada et al., 2002; Tercero et al., 2003). Indeed, Mec1 not only has to react appropriately to ssDNA, but must also be switched off rapidly to allow efficient replication and cell cycle resumption. This role may be ensured by the closely associated Pph3-Psy2 complex. We show that Rad53 dephosphorylation during recovery from HU treatment is delayed in pph3Δ cells (Figures 3A, 3B, S2A, and S2B), although loss of PP4 did not compromise recovery from arrest, as scored by colony formation (Figures 2E and 2F). Presumably other phosphatases (Ptc2, Ptc3, or Glc7) compensate over time for the loss of PP4, as reported for recovery from MMS treatment and DSB repair (Kim et al., 2011; Szyjka et al., 2008). We and others find that pph3Δ is synthetic with dia2Δ, ptc2Δ, and sae2Δ on HU, which also impair recovery from checkpoint-induced arrest (Figure 5D) (Guénolé et al., 2013; Keogh et al., 2006; Kim et al., 2011; O’Neill et al., 2007; Szyjka et al., 2008). These proteins may target Rad53 (Guillemain et al., 2007; Leroy et al., 2003; O’Neill et al., 2007; Travesa et al., 2008), limit Tel1 signaling (Clerici et al., 2006), or promote Mrc1 degradation (Fong et al., 2013). In either case, loss of Ptc2 showed significantly milder effects than pph3Δ and does not physically interact with Mec1-Ddc2 (Figures 2, 3, and 5).

The Yin/Yang of Mec1/PP4 Complexes

The copurification of opposing enzymatic activities is not unique. We note that the human RAP80 complex contains both ubiquitin ligase and deubiquitinase enzymes (Sobhian et al., 2007), and histone acetyltransferases and deacetylases have been shown to not only create a dynamic balance of acetylation of target proteins, but also be physically associated with each other, sometimes even regulating each other’s activity (Yamago et al., 2003). Intriguingly, Pph3-Psy2 regulates a phosphorylation site within the Mec1 kinase, Ser1991, possibly indirectly through Rad53 (Figure 7H), mutation of which compromises survival in face of DSBs, and not on HU. We have no clear explanation for this sensitivity, but note that the mec1-100 E-MAP profile in the absence of HU shows similarity to those of genes involved in DSB repair (Figure 1D). In fact, Ser1991 phosphorylation may alter the specificity of Mec1 and/or trigger its downregulation, rather than its induction. Intriguingly, Rad53 itself seems to be required for Mec1 Ser1991 phosphorylation, and given that we detected a large set of S/TQ phosphoacceptor peptides (Mec1 targets) that are upregulated in a rad53 deletion strain (Figures S3C–S3E), it is possible that Rad53 controls Mec1-Ddc2 in a negative fashion. An alternative interpretation, however, is that there is more damage in rad53Δ cells, which indirectly triggers Mec1/Tel1 activation.

How does checkpoint activation occur if an antagonizing activity is stably associated with the activating kinase? The phosphorylation of any given protein at any given time is always the result of competing kinase and phosphatase activities. Obviously, upon checkpoint activation, the catalytic rate of phosphorylation becomes stronger, and phosphorylated proteins accumulate. It appears that once Mec1 activation is triggered, it does not matter how much stronger it is (i.e., whether Pph3 is present or not). This would explain why Pph3 does not affect phosphorylation in MEC1+ cells, but does in mec1-100, which may have lower catalytic rates toward a subset of substrates in vivo.

The balance between the opposing activities can only be flipped by altering their specific activities. For instance, the recruitment of Rad53 by Sgs1 or Mrc1 (Alcasabas et al., 2001; Hegnauer et al., 2012) may induce a change in the specific activity of Mec1 toward Rad53, triggering checkpoint activation. Alternatively, the kinase may alter activity of the phosphatase, inhibiting it once a specific level of damage has occurred, and releasing it once damage is repaired. Finally, although we did not detect phosphopeptides from either Psy2 or Pph3, we cannot exclude that PP4 is a target of Rad53 or Mec1.

Other studies have identified DNA damage-related PP4 targets, both in yeast and in mammals, among them mammalian RPA2, KAP-1, 53BP1, CHD4, and yeast Cbf1, even though these studies were partially performed under nondamaging conditions (Bandyopadhyay et al., 2010; Lee et al., 2010, 2012). Those additional targets, and the 47 targets hit by both Pph3-Psy2 and Mec1-Ddc2 identified here, are most likely a nonexhaustive list, given that phosphopeptide coverage is incomplete.

Among many other interesting genetic interactions scored for mec1-100, we found several subunits of the chromatin remodeling complexes INO80, SWI/SNF (Switch or Sucrose non-fermentable), ISW (Imitation SWI/SNF), and Chd1, which show HU-induced synthetic lethality with mec1-100 (Figures 1C and S1D). Relevant to the phenotypes attributed to chromatin remodelers for stalled replication forks recovery (Papamichos-Chronakis and Peterson, 2008; Shimada et al., 2008), subunits of these chromatin remodelers were also among the mec1-100 downregulated phosphopeptides (e.g., les4 and Swi3). This reflects the close relationship of remodelers such as INO80 with DNA fork associated damage, as well as their recruitment to DSBs (van Attikum et al., 2004). A parallel study indicated two different modes of Mec1 activity, one working during unchallenged DNA replication, and one...
in response to damage (M. Smolka, personal communication). It is tempting to speculate that the association of Mec1-Ddc2 with Pph3-Psy2 is involved in regulating the switch between these two functions. Further work will delineate the underlying molecular mechanisms of such a switch.

EXPERIMENTAL PROCEDURES

Yeast Materials, Microscopy, Phosphoproteomics, Phosphatase Assay, and E-MAP

Yeast strains and plasmids are described in Tables S1, S2, and S3. Details of yeast two hybrid assay, growth conditions, antibodies, microscopy, phosphoproteomics, and the E-MAP assay are found in Supplemental Experimental Procedures. In general, the conditional E-MAP analysis was performed as described in Gue´nole´ et al., 2013.

Mammalian Cell Culture

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. Transfections were carried out using jetPEI (Polyplus) transfection reagent according to manufacturer’s instructions.

Spontaneous Suppressor Screening

mec1-100 (GA-4978) and mec1-100 exo1A (GA-6356) cells were plated on yeast extract, peptone, adenine, and dextrose (YPAD) + 50 mM HU and incubated for three days. Colonies were picked and backcrossed 2–3 times with WT (GA-1982) cells. Strains yielding no HU sensitive LEU + HIS + (mec1-100) spores were considered to have intragenic suppressors and the MEC1 locus was sequenced. Strains yielding both HU sensitive and insensitive LEU + HIS + (mec1-100) spores were deep sequenced to find extragenic mutations. Details are in Supplemental Experimental Procedures.

Kinase and Phosphatase Assays, Recovery and Drop Assay, Rad53 and H2A Phosphorylation, Fluorescence Activated Cell Sorting, and IP

Enzymatic assays, recovery and drop assays, fluorescence activated cell sorting (FACS) analysis, and Rad53 and H2A phosphorylation analysis were done as described previously (Hustedt and Shimada, 2014) or as detailed in Supplemental Experimental Procedures. AntiGFP IP was carried out as described for kinase assays, except that the lysis buffer was supplemented with protease and phosphatase inhibitors (see Supplemental Experimental Procedures) and bead-bound protein complexes were washed three times with lysis buffer prior elution with 0.2 M glycine. IP for mammalian cells was essentially the same, except that cells were harvested 48 hr post transfection by scraping off the plate into PBS, and washed once in PBS before snap-freezing pellets in liquid nitrogen. Nuclease treatment and nucleic acid monitoring is described in online Supplemental Experimental Procedures.

ACKNOWLEDGMENTS

N.H. thanks the European Union Innovative Training Networks “Image DDR” and the Swiss Cancer League for support. The Gasser laboratory is further supported by the Swiss National Science Foundation, Novartis Research Foundation, and the Human Frontier Science Program. F.V.L. and H.V. were supported by the Damon Runyon Cancer Research Foundation (DRO-2187-14). We thank M.P. Longhese for strains; F.E. Rromeberg for plasmids; D. Durocher for reagents; D. Hoepfner (Novartis) for E-MAP library analysis; E. Oakeley, S. Schuierer, T. Roloff, S. Dessus-Babus, and M. Stadler for deep sequencing and analysis; H. Gut and I. Deshpande for construct design; and Y. Murata, S. Nohara, M. Kawai, S. Ishikawa, and K. Doi for assistance.

Received: June 20, 2014

REFERENCES

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and seven tables and can be found with this article online at http://dx.doi.org/10.1016/j.molcel.2014.11.016.

AUTHOR CONTRIBUTIONS

K.S. and S.M.G. supervised and helped write the paper. A.S. performed FRET studies; R. Sack performed mass spectrosocpy; M.T.-P. performed β-galactosidase assays; B.B. sequenced yeast mutants; H.V., F.v.L., A.G., H.v.A., T.J., and R. Srivas helped with E-MAP studies; K.S. and S.M.G. supervised and helped write the paper.

Figure 7. Mec1 Phosphoserine 1991 Is Regulated by Rad53 and Pph3
(A) Mec1 phosphosites in blue, black lines = mec1-100 mutations, and red lines = suppressor mutations (Figure 1), and interaction domains and structural domains indicated below.
(B) Ddc2-GFP and Ddc2-GFP mec1-S1991A cells were treated with 0.2 M HU for 1 hr or arrested in G1 and released into YPAD at 25°C for indicated times. FACS was performed on samples to confirm cell cycle stage. After IP with α-GFP, western blots were performed with indicated antibodies, e.g., α-pMec1 (Mec1 phosphosine 1991).
(C) Exponential cultures of Ddc2-GFP and Ddc2-GFP mec1-100 ±0.2 M HU or 400 μg/ml Zeocin for 1 hr were extracted and subjected to IP by α-GFP. Western blots were probed with indicated antibodies, and input samples were probed with α-Rad53 to monitor checkpoint activation.
(D) Native extracts were prepared from Ddc2-GFP strains with indicated genotypes (see Tables S1 and S2) after 1 hr incubation + 0.2 M HU. α-GFP IP and western blotting with indicated antibodies was performed.
(E) 10-fold dilution series on YPAD ±100 μg/ml Zeocin of isogenic strains of indicated genotypes (see Tables S1 and S2).
(F) Cells transformed with pGAL-EcoRI (#2,745) and grown in selective medium to ensure plasmid retention were plated on 2% glucose or galactose supplemented with 2% raffinose, in 10-fold dilution series.
(G) Model of Ddc2-Psy2 interaction and coordinated interplay of Mec1-Ddc2 and Pph3-Psy2. Both target Rad53, H2A, and other targets. Most mec1-100/ Tel1-specific phosphosites are regulated by Pph3-Psy2 (“B”), while a few are not (“A”).
(H) Mec1 phosphosine 1991 requires Rad53 and Mec1, is compromised in mec1-100 cells, and rescued by loss of Pph3-Psy2. Mec1 regulation of Mec1 may be indirect. See Figure S7.

Paciotti, V., Clerici, M., Lucchini, G., and Longhese, M.P. (2000). The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with...
Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14, 2046–2059.