Western States Case Conference

Annie Coates, MD
Second Year Pediatric Pulmonary Fellow
Lucille Packard Children’s Hospital at Stanford
September 21st, 2011
Outline

• Case Presentation
• Diagnosis
• Management
• Summary
• Teaching Points
Case Presentation

• 4 month old Caucasian female: 36 week GA, h/o cyanotic congenital heart disease with multiple associated medical anomalies who has developed nasal congestion, cough and supplemental oxygen requirement.

• Initiated Xopenex every 4 hours as needed with benefit.

• Mother of the patient had recently been ill with a URI.

• 3 weeks prior to the consultation:
 – Brief intubation during cardiac catheterization procedure
 – ET aspirate positive for Stenotrophomas maltophilia and Serratia marcescens.
 – Treated with 7-day course of Bactrim; negative nasopharyngeal culture obtained 4 days prior.
Case Presentation

BIRTH HISTORY:
• Former 36 week GA, prenatally diagnosed with congenital heart disease. Her mother had routine prenatal care.
• The pregnancy was complicated by chronic hypertension, treated with labetalol and magnesium as well as type 2 diabetes requiring insulin therapy. The infant was noted to have a 2-vessel cord on prenatal ultrasound.

REVIEW OF SYSTEMS:
• A 14-point review of systems was obtained and otherwise noncontributory aside from what is noted above.
Case Presentation

PAST MEDICAL AND SURGICAL HISTORY:

• TOF with PA, MAPCAs, left hemitruncus of the left pulmonary artery arising from the aorta and PAPVR.
• Status post bronchoscopy on DOL#1 by ENT to assess for presence of tracheobronchial abnormalities.
• Status post aorticopulmonary shunt to the right pulmonary artery and banding of the left pulmonary artery on DOL#10.
• Ligation and division of a right ventricular outflow tract to the main pulmonary artery on DOL#10.
• History of right diaphragm paralysis, s/p diaphragm plication on DOL#42.
• Evaluated by Genetics, normal FISH and chromosomes.
Case Presentation

DEVELOPMENTAL HISTORY:
• Developmental delay, normal brain MRI. Followed by PT and OT who suggest that she may need a G-tube, but the family is against this at this time.

FEEDS: Elecare 28kcal/oz; 22ml/hr via NGT.

IMMUNIZATIONS: Up to date.

FAMILY HISTORY: Noncontributory.

SOCIAL HISTORY: Parents are united in marriage and actively involved during this care.

MEDICATIONS:
• Diuril 80 mg per NG tube q.12 h.
• Xopenex 0.63 mg/3 mL inhaled neb q.4 h.
• Prilosec 3.2 mg/1.6 mL per NG tube daily.
Physical Examination

MEASUREMENTS: Wt 4.28 kg (> than 2 SD below the 3%) and Ht is 55.5 cm (2%).

VITAL SIGNS: T 36.4, HR 132, RR 33, BP 68/31; O2 sat 79% on 2 L NC with FIO2 of 28%.

GENERAL: Small for age, 4-month-old female in no acute distress.

HEENT: NCAT, nares patent, NG tube and NC is in place. Trachea midline.

RESPIRATORY: Well-healed sternotomy scars. Good aeration throughout. Decreased BS in RUL compared to LUL, otherwise CTA. There is no stridor, nasal flaring, grunting, tachypnea or increased work of breathing.

CARDIOVASCULAR: Normal precordial activity, tachycardia, no murmurs, rubs or gallops. Capillary refill less than 2 seconds. Brachial pulses palpable and equal bilaterally.

EXTREMITIES: No clubbing or cyanosis.
Echocardiogram

- Large membranous to outlet VSD.
- Mildly dilated right ventricle.
- TOF with PA and MAPCAs.
- Normal LV systolic function.
- Mild right ventricular hypertrophy.
- Left to right shunting at the atrial level.
- The right atrium is moderately dilated.
CXR obtained on the day of our consultation
Upon further review of her imaging studies...
3D Reconstructed images of the airway
And the diagnosis is....

Congenital Tracheal Stenosis with a Bifid Trachea!
Congenital Tracheal Stenosis

- Characterized by structural tracheal constriction.
- Associated with pulmonary, cardiovascular and gastrointestinal malformations.
- Incidence ~ 1 in 64,500.
- Represents ~ 1% of laryngotratheal stenosis.
- Prior to the advent of current surgical techniques, mortality was reported to be as high as 79%.
Development of the Tracheoesophageal Septum

A: Foregut
 Ventral diverticulum
 Esophagus

B: Tracheoesophageal septum
 Lung buds
 Distal esophagus
 Carina

C: Esophageal atresia
 Distal tracheoesophageal fistula

© 1999 Bill Andrews
Embryologic Aortic Arch Complex

- Ventral aorta
- Dorsal aorta
- Internal carotid
- External carotid
- Pulmonary arteries
- Ductus arteriosus

Normal heart
- Esophagus
- Trachea

Double aortic arch
- Aorta

AP View
- Rt. Aortic Arch
- Lt. Aortic Arch
- Esophagus

Lateral View
- Heart

Double Aortic Arch Barium Swallow - shows impingement of the vascular malformation upon the esophagus both posteriorly and bilaterally. The impingement upon the trachea as well can result in tracheomalacia.
Tracheal Anatomy and Embryology

- The tracheal consists of a fibromuscular sheath supported by approximately 15 to 20 C-shaped cartilaginous rings and the trachealis muscle.
- Average diameter of the full-term newborn trachea is 6mm.
- The inner lumen is lined with pseudostratified ciliated columnar epithelium.
- Vital for the mucociliary transport that prevents mucus obstruction.

micro.magnet.fsu.edu
Clinical Symptomatology

- Classically presents with biphasic stridor.
- Brassy, nonproductive cough, nasal flaring, wheezing, intercostal retractions, intermittent cyanosis, acute life threatening respiratory failure.
- Difficult intubation, failure to extubate or trouble with ventilation.
- Symptoms may not become apparent until ~50% stenosis, dyspnea at rest is likely to present at 75% stenosis.

Ho et al, 2008
Clinical Symptomatology

• Presentation may be delayed until the infant develops an acute respiratory infection that exacerbates the narrowed lumen.
Diagnosis

- Clinical suspicion.
- Initial priority must be to secure the airway.
- Exclude other causes of acute respiratory distress.
- Imaging modality.
- Bronchoscopy remains the most reliable method of diagnosing tracheal stenosis.
Imaging

Ho et al., 2008
Imaging

Berrocal T et al. Radiographics 2004;24:e17-e17
CXR obtained on DOL#1
Classification schemes

- **Tracheal Stenosis**
 - Congenital
 - Acquired

- **Compression**
 - Intrinsic
 - Extrinsic

- **Segment Size**
 - Short
 - Long
Classification Schemes
Medical Management

• Conservative management.
 – Observation is a safe, viable approach for clinically mild tracheal stenosis to determine if an operation will be needed eventually.
 – One longitudinal study found that stenotic tracheas naturally display catch up growth.
 – Treatment includes antireflux treatment, antibiotics, chest physiotherapy, and humidified air.

• Endoscopic treatments include laser excision, balloon dilation and stent placement.

Interventional Strategies

Ho et al, 2008
Interventional Strategies

Ho et al, 2008
Surgical Management: Resection and Anastomosis
Surgical Management:
Slide Tracheoplasty

Ho et al, 2008
Surgical Management:
Pericardial Patch Tracheoplasty
Getting back to our patient…

• Tracheoplasty of the bifid trachea with a patent bronchus.
• Ligation and division of the MAPCAs.
• Central patch augmentation of the left and right branch pulmonary arteries.
CXR on POD#1
Case Presentation

• Unremarkable post-operative course.
• Discharged home on room air without evidence of respiratory distress on POD #10.
• Close follow up with Pulmonology and ENT.
CXR 4 ½ months after her tracheoplasty
Summary

• Congenital tracheal stenosis is associated with pulmonary, cardiovascular, and gastrointestinal malformations.
 – Tracheal bronchi are seen in up to 20% of cases of congenital tracheal stenosis.
 – Vascular malformations are seen in as many as 50% of all cases of tracheal stenosis.

• The management of congenital tracheal stenosis has dramatically improved the outcomes of affected patients in the past several decades.
Teaching points

• Associations with other malformations.
 – Know your embryology!
• Imaging pearls.
• Index of suspicion.
Questions? Further thoughts?
Thank you very much for participating!
References

8. micro.magnet.fsu.edu