Generalized competing event model

Let \(n, k, \) and \(p \) be the number of observations, covariates, and mutually exclusive event types, respectively. Let \(z \) be the number cause-specific events, and \(p-z \) be the number of competing events. Let \(\mathbf{d} \) represent the \(k \times 1 \) vector of covariate values, and \(\mathbf{1}_m \) represent a \(m \times 1 \) vector of 1’s. Let \(i \) be an index of natural numbers ranging from 1 to \(p \). Let \(\lambda_{0i} \) represent the cause-specific hazard for event \(i \), and \(\lambda_0 = \Sigma \lambda_{0i} \) represent the hazard for any event, under a given set of experimental conditions.

We model the cause-specific hazard for event \(i \), under an alternative set of conditions as \(\lambda_{1i} = g(\mathbf{X}_i \beta_i) \lambda_{0i} \), for an invertible function \(g(\cdot) \), an \(n \times k \) data matrix \(\mathbf{X} \), and a \(k \times 1 \) vector of effect coefficients \(\beta_i \). The hazard for any event under the alternative set of conditions is \(\lambda_1 = \Sigma \lambda_{1i} = \Sigma g(\mathbf{X}_i \beta_i) \lambda_{0i} \) and the hazard ratio is expressed as:

\[
\frac{\lambda_1}{\lambda_0} = \frac{\Sigma g(\mathbf{X}_i \beta_i) \lambda_{0i}}{\Sigma \lambda_{0i}}
\]

in other words, the hazard ratio is a weighted average of the effects on the cause-specific hazards under the initial conditions. Here \(\beta \) is the \(k \times p \) coefficient matrix, with each element \(\beta_{v,w} \) representing the effect of covariate \(v \) on event \(w \). Note that under the assumption of effect homogeneity with respect to the cause-specific events, \(\beta_j = \beta_k = \beta \) for all \(j, k \in \{1, \ldots, p\} \), therefore:

\[
\frac{\lambda_1}{\lambda_0} = \frac{\Sigma g(\mathbf{X}_i \beta_i) \lambda_{0i}}{\Sigma \lambda_{0i}} = \frac{\Sigma g(\mathbf{X} \beta) \lambda_{0i}}{\Sigma \lambda_{0i}} = \frac{g(\mathbf{X} \beta) \Sigma \lambda_{0i}}{\Sigma \lambda_{0i}} = g(\mathbf{X} \beta).
\]

Let \(\mathbf{b}_i \) be a maximum (partial) likelihood estimator for \(\beta_i \) (e.g., using \(g(x) = e^x \)); alternatively, we can let \(\mathbf{b}_i \) represent an analogous maximum partial likelihood estimator
for sub-distribution hazards.2,3 Let \(B = [b_1 \ b_2 \ ... \ b_p] \) be the \(k \times p \) matrix of coefficients, with each element \(b_{v,w} \) of \(B \) representing the estimated effect of covariate \(v \) on event \(w \). Since columns of \(B \) are interchangeable, we can order the elements of \(B \) such that the first \(z \) vectors correspond to events of interest and the remaining \(p-z \) vectors correspond to competing events, i.e. \(B_{1,z} = [b_1 \ b_2 \ ... \ b_z] \) and \(B_{z,p} = [b_{z+1} \ b_{z+2} \ ... \ b_p] \), so \(B = [B_{1,z} \ B_{z,p}] \). Now using the data vector \(d \), we construct an individual risk score as follows:

\[
R = (d^T B_{z,p}) 1_{p-z} - (d^T B_{1,z}) 1_z
\]

(3)

Note that under the assumption of effect homogeneity with respect to the cause-specific events, \(b_j = b_k = b \) for all \(j, k \in \{1,\ldots,p\} \), so \(R = cd^T b \) for some constant \(c \).

References